Applications

NIOS Nanomechanical Testers: Metal-ceramic and polymer applications

Optical microscopy


 Optical microscopy1.png Optical microscopy2.png   
Indenter positioning – displacement between microscope focus point and indenter tip is calibrated with 1 um accuracy

Measuring linear size (and area) over the optical image  Measuring linear1.png  Measuring linear2.jpg


Example: coated cutting tools


        micro-drill1.png    Sample: micro-drill for electronics industry applications

Ra = 70 nm

RMS = 86 nm

Rz = 232 nm

H = 30,8±6,5 GPa

E = 675±105 GPa

k = 2,15±0,05 kN/m   
              micro-drill2.jpg 
     cutting1.jpg                   Surface topography.png
Surface topography1.png
Image of the residual imprint.png 
Sample: cutting edge of the fraise  Surface topography  Image of the residual imprint 

Example: multilayer coating on cutting tools


           Sample.png Sample angle polish.jpg  Optical image of layered structure.jpg 
Sample  Sample angle polish  Optical image of layered structure 

Material

Hardness, GPa

Elastic modulus, GPa

Hard Alloy

19.0 ± 5.4

410 ± 140

TiCN

17.7 ± 4.5

340 ± 80

Al2O3

20.4 ± 4.0

340 ± 35

TiN

10.9 ± 3.3

360 ± 200


Localized nanomechanical tests


Localized nanomechanical tests.png  Topography after indentation.png 

Topography: before indentation 

Topography: after indentation 


Sample: aluminum alloy D16


SPM aids indentation: pile-up analysis


 pile-up analysis1.jpg Рисунок2.png 

Pile-up analysis on steel 254 reference block HV 0.05 

 pile-up analysis2.jpg  

X – rheological factor

E – Young’s modulus

ρ0 – yield stress

θ – semi-apical angle of indenter   
Рисунок1.jpg   

Study of delamination, adhesion and thickness


Sample: plasma sputtered diamond-like coating


 1Рисунок1.png 2Рисунок3.png 3Рисунок4.png 4Рисунок5.png


Безымянный0.png  Безымянный1.png  Безымянный2.png  Безымянный3.png 

Thickness, nm

Load at which film is pulled, mN

1

460 ± 20

6,2 ± 0,3

2

265 ± 10

5,9 ± 0,3

3

960 ± 70

11,0 ± 2,6

4

1255 ± 20

20,8 ± 6



Reciprocating wear tests


Рисунок21.png Spherical Al2O3 tip Рисунок22.png  Рисунок23.jpg 
Безымянный4.png    Рисунок24.jpg 



Sample

∆h, nm

Duralumin (untreated)

75 ± 15

Duralumin with protective mineral coating

5.9 ± 1.2


Wear estimation of coatings


Wear time diagram  Indirect volume estimation over the optical micro-photograph of the groove 
Wear time diagram.jpg    Indirect volume.jpg 
form.png
J = (L×t×ν)/h 

R=17 um — effective stylus radius;

w — width of the residual groove;

L=100 um — groove length; 
L=100 um — stroke length;

ν=0,13 Hz — reciprocating test frequency;

t=7600 sec — testing time;

h — indentor penetration depth;


Direct volume estimation.jpg

Direct volume estimation

over the SPM image 



ABI (automated ball indentation)


ABI (automated ball indentation).png    Experimental.png 

Experimental
multicycle
loading-unloading curves 

loading-unloading.png   


2D: H=f(x, y), static loading


Sample: gradient magnetic alloy of the following composition:

Chemical element

Cr

Ni

Si

Mn

C

V

Fe

Contents, %

16,5

7,5

0,48

1,0

0,08

0,04

remains


Hardness map.jpg  Hardness profile.jpg   

Hardness map

of the magnetic zone boundary   
Hardness profile across the magnetic zone boundary 


Mapping 3D: H=f(x, y, z), hardness tomography


Volumetric quantitative map
Optical micro-photo of the array of PUL indentations   
Volumetric quantitative.png 
thin Ag film.png    Volumetric quantitative map (tomogram) of hardness 
Volumetric quantitative map1.png 


Mapping 3D: hardness tomography


Sample: separation border between copper and Fe-Cr-Al alloy

separation border between.jpg  separation border between1.png 


Sample: Polymer material for tooth prosthetics


Polymer material.png  It has been shown that chemical treatment reduces hardness and elastic modulus for 10-15%

Blue lines – before treatment
Green lines – after treatment     
Surface topography2.png  Hardness vs. depth dependency.png  Elastic modulus.png 
Surface topography and cross-section profile  Hardness vs. depth dependency for 3 polymer samples  Elastic modulus vs. depth dependency for 3 polymer samples 


Sample: Thin film of poly-n-isopropylacrylamide


polymer exhibits.png    tab1.png 
tab2.png 
This polymer exhibits the properties of superabsorbent and is used in pharmaceutical industry during remedies extraction.  tab3.png 

Thickness, nm

Hardness, GPa

100

0.5 ± 0.1

5000

1.1 ± 0.3

 
Height profile of the pNIPAm film.  Pile up  effect depends on applied  forces (F) and film thickness (h): a) F=5mN, h=5µm; b) F=1mN, h=100nm; c) F=2mN, h=100nm. 


Example: protective polymer coatings


Samples: polymer materials with thermosetting siloxane protective coating

Profile, hardness, elastic properties testing     Instrumented indentation.png 
Polycarbonate.jpg

Polycarbonate (1)           

Polymethylmethacrylate (2)  Polycarbonate + coating (3)  Instrumented indentation loading-unloading curves 

Sample

Roughness, nm

Elastic (Young) modulus, GPa

Hardness, GPa

Elastic recovery rate, %

PC

11,8

2,2

0,27

72

PMMA

4,4

4,5

0,33

60

PC+coating

0,5

1,4

0,68

99

     
Topography image.jpg 
Topography image after progressive scratch test (0 to 30 mN): PC (a) and PC+coating (b) 


Mapping 2D: H=f(x, y), dynamic loading


Sample: glass fibers in the polymer matrix

Surface topography3.png  Hardness map1.jpg 
Surface topography  Hardness map 
                                                               form1.png 

F - load force,
Δf - shift of the resonance frequency,
f0 - the resonance frequency of free probe
k - the dynamic stiffness.

Using this formula allows us to calculate H/E2 (and accordingly, H or E if at least one of these quantities is known) as a function of depth or surface coordinates. 


Mapping 3D: hardness tomography


Sample: transition area between 2 polymer coatings on polydimethilsiloxane (PDMS) substrate

substrat.jpg  Elastic modulus1.png   
Hardness tomography technique is based on combination of PUL or DMA method with precise indentor positioning over the regular XY grid on the sample surface 


Samples: polyethylene multilayer film with thickness 50-300 um


Task: testing the mechanical strength and resistance to puncture of films on the

substrates of polypropylene and steel


diamont.png  polymer films.png   
Berkovich.png 
Loading-unloading curves obtained with Berkovich diamond indentor  Loading curves during puncture test with flat punch indentor showing comparison of mechanical strength of polymer films 



 









Related Information